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ABSTRACT 

 

Magicicada is the genus of the 13 and 17 year periodical 

cicadas of eastern North America; these insects display a 

unique combination of long life cycles, periodicity, and 

mass emergences. Their nymphs live underground and stay 

immobile before constructing an exit tunnel in the spring of 

their 13th or 17th year, depending on the species. Once out, 

the adult insects live only for a few weeks with one sole 

purpose: reproduction. Both 13 and 17 are prime numbers; 

why did the cicadas “choose” these lengths for their life 

cycles? One interesting hypothesis is that the prime number 

cycles were selected because they were least likely to 

emerge with other cycles. If that’s the case, then these 

lengths would have been selected via a sort of “tacit 

communication” by evolution. In the present work we 

create an agent based model, depicting a world in which 

cicadas with different life cycles go outside and cross 

among them, creating other insects with a life cycle 

inherited from the parents. In the simulation food is limited 

and predators exist, that can be satiated if the number of 

cicadas going out is large enough. The model could give us 

an empirical answer to the following question: is the 

"predator satiation" hypothesis enough, along with the 

limited food quantity, to explain the prime numbers based 

life cycle of these insects? 

1. Introduction 

There are two species of cicada, called Magicicada 

Septendecim and Magicicada Tredecim, which have a life 

cyle of 17 and 13 years respectively (Remondino, 2005). 

These are among the longest living insects in the world; 

they display a unique living behaviour, since they remain in 

the ground for all but their last few weeks of life, when they 

emerge “en masse” from the ground into the forest where 

they sing, mate, eat, lay eggs and then die. The nymphs of 

the periodical cicadas live underground, at depths of 30 cm 

(one foot) or more, feeding on the juices of plant roots. 

They stay immobile and go through five development 

stages before constructing an exit tunnel in the spring of 

their 13th or 17th year. Adult periodical cicadas live only 

for a few weeks: by mid-July, they will all be gone. Their 

short life has one sole purpose: reproduction. After mating, 

the male weakens and dies. The female lives a little longer 

in order to lay eggs: it makes between six and 20 V-shaped 

slits in the bark of young twigs and deposits up to 600 eggs 

there. Shortly afterwards, the female also dies. After about 

six to ten weeks, the eggs hatch and the newborn nymphs 

drop to the ground, where they burrow and begin another 

13 or 17 year cycle. 

 

The fact that they have both evolved prime number life 

cycles is thought to be key to their survival. Many are the 

hypothesis about why these insects display these life cycle 

lengths. Two are the most interesting ones, and both of 

them require an adaptation by evolution of these species. 

The first one is about limited resources, that must be shared 

by the insects once out. By evolving life cycles of 17 and 

13 years, the two species only have to share the forest floor 

every 221 years, that’s 13 times 17. Resource boundedness 

can then be considered as an upper limit for the cicadas: no 

more than a threshold could survive with the available food, 

and then the fewer insects are out at the same time, the 

better. 

 



 

The second hypothesis, actually interacting with the first 

one, is somewhat opposite to it; it’s called predator 

satiation hypothesis and moves the focus from the insects to 

their main predators: dogs, cats, birds, squirrels, deer, 

raccoons, mice, ants, wasps, and even humans make a meal 

of the cicadas. Predator satiation is when a species can 

survive because its abundance is so great that predators do 

not have a large enough impact to effect the species' 

survival. In order to prove that predator satiation is 

occurring in a certain situation one must prove that above a 

certain prey density, the frequency of predation does not 

increase as the prey density increases (Williams et 

al.,1993). In the case of magicicadas this has been proven to 

occur. When the first cicadas emerge from the soil there is a 

very high predation rate, especially from avian predators. 

However, the predation rates decline over the next couple 

of days as predators have indulged in all the food they 

needed, or "satiated". Then, by the time that the satiation of 

the predators has worn off and foraging activities increase 

again, the density of adult cicada's has begun declining and 

they have already mated. This creates a situation where 

only a small portion of the adult population is consumed by 

predators. This is indeed a sort of lower bound for the 

number of cicadas that can be out at the same time; in few 

words, the more cicadas out at the same time, the least the 

possibility of being decimated by predators. Also according 

to this hypothesis, the prime numbers have a motivation: 

the prime number cycles were selected for because they 

were least likely to emerge with other cycles. For periodical 

cicadas emerging with other cycles of cicadas would mean 

hybridization, which would split up populations, shift adult 

emergences, and create lower densities below the critical 

size (Yoshimura, 1996). This would have made it harder for 

the hybridized broods to survive predation. Thus, prime 

number cycles which emerged with other cycles the least, 

would grow in population size over time because they 

would have the highest survival rates. 

 

Considering these two hypothesis as real and founded, 

then we can assume that there has been a sort of selection 

among the species through many generations or, better a 

“tacit communication by evolution”. In this way, the prime 

number cycles can be seen a very interesting emergent 

natural phenomenon, where the conclusions (results) were 

not embedded in any way into the initial data. For this 

reason, we chose to model this phenomenon using Agent 

Based Simulation (ABS), a tool allowing us to capture 

emergent behaviour arising from complex systems. Using 

an agent-based model of the cicadas’ life cycle, we simplify 

the world in which they life and reduce it to just few 

parameters, essentially the limited resources and the 

predators. The cicadas have an reproduction rate, and so the 

predators and the food; we wonder if these parameters are 

enough for prime number life cycles to emerge. 

2. Agent Based Simulation and Emergent Behaviour 

In the study of aggregate behaviour within Biology, it is 

more and more recognized that in addition to real 

experiments and field studies, also simulation experiments 

are a useful source of knowledge and verification. Using 

simulations for testing and validation of computational 

models could be seen as performing an experiment: since in 

the social sciences real experiments are in many cases not 

possible or only in a very restricted way, the use of 

computer simulations plays a decisive role: very often 

computer experiments have to play the part of real 

experiments in the laboratory sciences. By the way, that is 

also the case in those natural sciences where for similar 

reasons experiments are not (yet) possible, in particular in 

the those sciences like Entomology or evolutionary 

Biology. 

 

ABS looks at agent behaviour at a decentralized level, at 

the level of the individual agent, in order to explain the 

dynamic behaviour of the system at the macro-level. 

Instead of creating a simple mathematical model, the 

underlying model is based on a system comprised of 

various interacting agents. Therefore, its structure and 

behaviour have potential to resemble the actual economic 

theory and reality better than simple mathematical models. 

Especially, when the underlying real relationships are 

complex. There are many accepted definition for the word 

“complexity”, when applied to a social system, i.e.: a 

system in which the single parts interact among them. The 

first and most straightforward one is the following (Pavard 

and Dugdale, 2000): 

 

A complex system is a system for which it is difficult, if 

not impossible to restrict its description to a limited number 

of parameters or characterizing variables without losing its 

essential global functional properties. 

 

Formally, a system starts to have complex behaviours 

(non-predictability and emergence etc.) the moment it 

consists of parts interacting in a non-linear fashion. 

According to this, a complex system is defined as: 

 

…the interaction of many parts, giving rise to 

difficulties in linear or reductionist analysis due to the 

nonlinearity of circular causation and feedback effects 

(Calresco Glossary).  

 

It is thus appropriate to differentiate between a 

complicated system (such as a plane or computer) and a 

complex system (such as ecological or economic systems). 

The former are composed of many functionally distinct 

parts but are in fact predictable, whereas the latter interact 

non-linearly with their environment and their components 

have properties of self-organization which make them non-

predictable beyond a certain temporal window. 

 

A truly complex system would be completely 

irreducible. This means that it would be impossible to 

derive a model from this system (i.e. a representation 

simpler than reality) without losing all its relevant 

properties. However, in reality different levels of 

complexity obviously exist. If we are interested in 

situations which are highly structured and governed by 

stable laws, then it is possible, without loosing too many of 

the system’s properties, to represent and model the system 

by simplification. Thus, the essential question is to know to 

what extent the properties of the social systems that we 

analyze and design fall into one or the other of these 



 

situations. In other words, to what extent we can make an 

abstraction of microscopic interactions in order to 

understand macroscopic behaviours. In what measure 

microscopic interactions are linked in a non-reducible way 

with the laws that govern more structured behaviours and, 

finally, we must check if it is possible to explain the most 

structured behaviour using rules which control the 

microscopic behaviour. This last question is important from 

an epistemological and methodological point of view: if we 

consider theoretical economy, it can be preferable to 

generate the structural property of a system using 

knowledge of its microscopic properties (emergence), 

rather than suggest its macroscopic properties and only 

validate them with an analytical process. 

The reduction of complexity is an essential stage in the 

traditional scientific and experimental methodology (also 

known as analytic). After reducing the number of variables 

(deemed most relevant), this approach allows systems to be 

studied in a controlled way, i.e. with the necessary 

replication of results. 

As stated before, we are facing a situation in which an 

emergent behaviour occurs: prime number life cycles are 

probably a result of the environment in which the cicadas 

live. The agent-based model could give us an empirical 

answer to the following question: is the "predator satiation" 

hypothesis enough, along with the limited food quantity, to 

explain the prime numbers based life cycle of these insects? 

3. Different Kinds of Agents 

The term agent, deriving from the Latin “agens”, 

identifies someone (or something) who acts; the same word 

can also be used to define a mean through which some 

action is made or caused. The term is used in many 

different fields and disciplines, such as economics, physics, 

natural sciences, sociology and many others. In computer 

science, the word is used to define very heterogeneous 

entities and sometimes is even abused. The main purpose of 

this work is to investigate various kinds of software agents 

that could be applied to modeling and simulation of 

complex social systems. In this paragraph we will review 

different kinds of agents, in order to select the ones which 

best fits for our purpose. 

 

The concept of software agent originates in the early 

fifties with J. McCarthy, while the term has been coined by 

O.G. Selfridge some years later, when both of them were 

working at the Massachusetts Institute of Technology. 

Their original project was to build a system which, given a 

goal, could be able to accomplish it, looking for human 

help in case of lack of necessary information. In practice, 

an agent was considered a software robot that lives and acts 

in a virtual world. In (Wooldridge and Jennings 1995): "... a 

hardware or (more usually) software-based computer 

system that enjoys the following properties:  

 

• autonomy: agents operate without the direct 

intervention of humans or others, and have some kind of 

control over their actions and internal state;  

• social ability: agents interact with other agents 

(and possibly humans) via some kind of agent-

communication language;  

• reactivity: agents perceive their environment, 

(which may be the physical world, a user via a graphical 

user interface, a collection of other agents, the internet, or 

perhaps all of these combined), and respond in a timely 

fashion to changes that occur in it;  

• pro-activeness: agents do not simply act in 

response to their environment, they are able to exhibit goal-

directed behaviour by taking the initiative." The 

Wooldridge and Jennings definition, in addition to spelling 

out autonomy, sensing and acting, allows for a broad, but 

finite, range of environments. They further add a 

communications requirement. 

 

Franklin and Graesser (1997) also try to find the typical 

features of agency, deriving them from the word itself: an 

“agent” is 1) one who acts, or who can act, and 2) one who 

acts in place of another with his permission. Since "one 

who acts in place of " acts, the second usage requires the 

first. Humans act, as do most other animals. Also, some 

autonomous mobile robots act, for example Brooks' Herbert 

(Brooks 1990; Franklin 1995). All of these are real world 

agents. Software agents "live" in computer operating 

systems, databases, networks, MUDs, etc. 

Finally, artificial life agents "live" in artificial 

environments on a computer screen or in its memory 

(Langton 1989, Franklin 1995). 

Each is situated in, and is a part on some environment. 

Each senses its environment and act autonomously upon it. 

No other entity is required to feed it input, or to interpret 

and use its output. Each acts in pursuit of it's own agenda, 

whether satisfying evolved drives as in humans and 

animals, or pursuing goals designed in by some other agent, 

as in software agents. (Artificial life agents may be of either 

variety.) Each acts so that its current actions may effect its 

later sensing, that is its actions effect its environment. 

Finally, each acts continually over some period of time. A 

software agent, once invoked, typically runs until it decides 

not to. An artificial life agent often runs until it's eaten or 

otherwise dies. Of course, some human can pull the plug, 

but not always. Mobile agents on the Internet may be 

beyond calling back by the user. 

These requirements constitute for sure the essence of 

being an agent, hence the definition by Franklin and 

Graesser (1997): 

 

An autonomous agent is a system situated within and a 

part of an environment that senses that environment and 

acts on it, over time, in pursuit of its own agenda and so as 

to effect what it senses in the future. 

 

And the very general, yet comprehensive one by 

Jennings (1996): 

 

…the term is usually applied to describe self-contained 

programs which can control their own actions based on 

their perceptions of their operating environment. 

 

Agents themselves have traditionally been categorized 

into one of the following types (Woolridge and Jennings, 

1995):  

 

• Reactive  



 

• Collaborative/Deliberative 

• Hybrid  

 

When designing any agent-based system, it is important 

to determine how sophisticated the agents' reasoning will 

be. Reactive agents simply retrieve pre-set behaviors 

similar to reflexes without maintaining any internal state. 

On the other hand, deliberative agents behave more like 

they are thinking, by searching through a space of 

behaviors, maintaining internal state, and predicting the 

effects of actions. Although the line between reactive and 

deliberative agents can be somewhat blurry, an agent with 

no internal state is certainly reactive, and one which bases 

its actions on the predicted actions of other agents is 

deliberative.  

In Mataric (1995) we read that reactive agents maintain 

no internal model of how to predict future states of the 

world. They choose actions by using the current world state 

as an index into a table of actions, where the indexing 

function's purpose is to map known situations to 

appropriate actions. These types of agents are sufficient for 

limited environments where every possible situation can be 

mapped to an action or set of actions.  

The purely reactive agent's major drawback is its lack of 

adaptability. This type of agent cannot generate an 

appropriate plan if the current world state was not 

considered a priori. In domains that cannot be completely 

mapped, using reactive agents can be too restrictive. 

Different from reactive agents are the deliberative ones. 

The key component of a deliberative agent is a central 

reasoning system (Ginsberg, 1989) that constitutes the 

intelligence of the agent. Deliberative agents generate plans 

to accomplish their goals. A world model may be used in a 

deliberative agent, increasing the agent's ability to generate 

a plan that is successful in achieving its goals even in 

unforeseen situations. This ability to adapt is desirable in a 

dynamic environment.  

The main problem with a purely deliberative agent 

when dealing with real-time systems is reaction time. For 

simple, well known situations, reasoning may not be 

required at all. In some real-time domains, such as robotic 

soccer, minimizing the latency between changes in world 

state and reactions is important.  

Hybrid agents, when designed correctly, use both 

approaches to get the best properties of each (Bensaid and 

Mathieu, 1997). Specifically, hybrid agents aim to have the 

quick response time of reactive agents for well known 

situations, yet also have the ability to generate new plans 

for unforeseen situations. 

 

A multi agent system can be thought of as a group of 

interacting agents working together to achieve a set of 

goals. To maximize the efficiency of the system, each agent 

must be able to reason about other agents' actions in 

addition to its own. A dynamic and unpredictable 

environment creates a need for an agent to employ flexible 

strategies. The more flexible the strategies however, the 

more difficult it becomes to predict what the other agents 

are going to do. For this reason, coordination mechanisms 

have been developed to help the agents interact when 

performing complex actions requiring teamwork. These 

mechanisms must ensure that the plans of individual agents 

do not conflict, while guiding the agents in pursuit of the 

goals of the system. 

 

For our purposes, the agents which seem most suited are 

the reactive ones. We need agents able to react to simple 

stimuli coming from the environment – the insects, the 

predators and food. Everything in our model will be 

designed as an agent, but a very simple one. 

4. Analytical and Simulation Modelling 

Modeling is a way of solving problems that occur in the 

real world. It is applied when prototyping or experimenting 

with the real system is expensive or impossible. Modeling 

allows to optimize systems prior to implementation. It 

includes the process of mapping the problem from the real 

world to its model in the world of models, – the process of 

abstraction, – model analysis and optimization, and 

mapping the solution back to the real system. We can 

distinguish between analytical and simulation models. In 

analytical, or static, model the result functionally depends 

on the input (a number of parameters); it is possible to 

implement such model in a spreadsheet. 

However, analytical solution does not always exist, or 

may be very hard to find. Then simulation, or dynamic, 

modeling may be applied. A simulation model may be 

considered as a set of rules (e.g. equations, flowcharts, state 

machines, cellular automata) that define how the system 

being modeled will change in the future, given its present 

state. Simulation is the process of model “execution” that 

takes the model through (discrete or continuous) state 

changes over time. In general, for complex problems where 

time dynamics is important, simulation modeling is a better 

answer. In Figure 1, metaphor based approach (Remondino, 

2003) is shown, depicting how to step from a real observed 

situation (problem in the real world) to a computer model 

and hence to a simulation in order to obtain results that can 

be scaled back to be applied to the original problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 From the real world to the simulation 
 

The metaphor layer is a conversion one, and works like 

a function, which maps a real situation onto a computer 

program, that can be executed by a machine. The results 

obtained by the simulation built with this approach, don’t 

necessarily apply one-to-one to the real situation. 
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Therefore, an inverse function is required, which makes 

them suitable for the observed reality; this inverse function, 

called counter-metaphor, has to be directly derived from the 

metaphor used to port the observed system into the 

simulated model. This counter-metaphor will allow going 

back from the results obtained from the model to others that 

can be compared to the real data. 

According to (Troitzsch, 1996), computer simulation in 

the social sciences has at least two types of origins: on one 

hand, it continues mathematical modeling and is no more 

than the numerical treatment of difference equations or the 

various kinds of differential equations (including partial and 

stochastic differential equations). Here, a machine is used 

to manipulate the symbols of the symbol system of 

mathematics, and this manipulation is more or less 

restricted to numerical treatment (although some computer 

help in symbolic computation is sometimes desirable, too). 

On the other hand, computer simulation is used in its own 

right, not as a substitution for more elegant mathematical 

solution algorithms, but as a means of manipulating the 

symbols of the symbol system of programming languages. 

Ostrom (1988) described simulation as a third symbol 

system in its own right and as an alternative to 

mathematical formalization of social science theories and 

verbal argumentation. The former is of course highly 

computable, but it's very difficult to express real observed 

situations just by numerical means and equations. The other 

alternative is natural language, which has a huge capability 

in representation but it's not computable at all. Ostrom 

stated that "any theory that can be expressed in either of the 

first two symbol systems can also be expressed in the third 

symbol system" and that computer simulation has the 

advantages of both the other symbol systems, without their 

disadvantages, since it “can be used for representing both 

qualitative, natural language constructs and quantitative, 

mathematical constructs". 

The first use of simulation is to detect which 

conclusions may be drawn from complex antecedents. This 

is what used to be called concept-driven simulation 

(Henize, 1984). A target system is represented by a verbal, 

mathematical, or computer model (with all the necessary 

simplifications). The question is about the possible futures 

of such a target system: will it stabilize overtime or be 

destabilized? What happens if we change something in the 

initial conditions? Can the system be optimized, regarding 

some core parameters? This is the core of the simulation 

process, sometimes referred to as what if analysis; a 

simulation can indeed give some very useful results about 

what we can expect from the target system, when this is 

carefully modeled. Of course simplifications are needed – a 

model, by definition, is a scaled down representation of 

reality – but even then the results can apply to real 

situations. 

5. The model 

We created an agent based model using the JAS library 

(http://jaslibrary.sourceforge.net/), in order to simulate 

different situations in which many species of cicadas 

compete for finite resources and are threatened by some 

predators. The only difference among the species, in our 

model, is the duration of their life cycle; population #1 will 

have a one year long life cycle, while population #20 a 

twenty years life cycle and so on. In this paragraph we 

describe the model as it’s been implemented; we put in 

italic the variable name. 

We define a world with a fixed amount of resources 

(resources), that can be consumed by cicadas, a fixed 

amount of predators (predatorsNumber) and a probability 

to survive at wake up (chanceToSurviveAtBirthRate). 

Except for the costrain represented by food (resources), the 

other (chanceToSurviveAtBirth and predators) can be 

switched on and off, through the parameters window.  

The population of cicadas is characterized by the 

number of members (magicicadasNumber), randomly 

distribuited among the different classes and by a growth 

rate (reproductionRate). 

 

We use a fixed number of predators in order to 

underline that their population is not influenced by cicadas; 

In fact these insects represent only an alternative food, 

among the many present in nature. 

 

At the beginning of the simulation the cicadas are 

uniformly randomly distributed among C classes/sub-

species. In our metaphorical world, each class of cicadas 

has a different life cycle length, so that they wait a different 

number of years underground, from a minimum of 1 to 

maxSleepingTime. We decided to use 20 as a maximum 

number of years a cicada can live, since in nature the 

magicicada septendecim is already the longest living insect, 

and we wanted to have a realistic setup. However, our 

model supports whatever number as a maximum life cycle. 

 

At each simulation step, one year passes. At any turn the 

model inquires every cicada in order to update/reduce the 

number of years left for it to stay underground, or if this 

time is over, wake it up. 

The probability chanceToSurviveAtBirthRate also 

increases every year they spent underground. This is done 

according the biological theory that a longer life cycle is 

usually a good achievement. In particular, for the cicadas, 

Yoshimura (1996) points out that during the climate 

cooling of the Glacial period, growth and development of 

cicada nymphs was slowed down by lowering soil 

temperature. He supports this by pointing out that it is well 

known that cumulative temperature is very critical in insect 

development. Also, the fact that the cooling climate slowed 

down the development of host plants from which cicadas 

get their nutrient may have also slowed their development. 

Because cicadas needed proper nutrients at each stage of 

their developmental cycle, and they were provided less 

because of the cooling temperatures, their life cycle was 

extended to larger range of years. So in the model we 

increase the chanceToSurviveAtBirthRate at any simulation 

step, to reproduce this natural phenomenon. When the 

cicadas have to go outside (i.e.: when their time 

underground is over), they perform a first check according 

to this probability. 

As soon as they go outside, the cicadas must eat and 

reproduce themselves. Since the resources are limited, in 

our model only a certain number of cicadas can survive at 

each year/tic; this is a strong constraint existing also in the 

real world. We decided that if there are n resources in the 



 

world, at time t, only n cicadas will survive. 

Then predators can also eat cicadas, and reduce the 

population. This is the second constraint, present in the real 

world. In order to fulfil the “predator satiation” hypothesis 

we decided that after eating a fixed number of cicadas, the 

predators are satiated and let the other cicadas live and 

reproduce.  

Finally the survived cicadas can reproduce and die; we 

clone the cicadas according to reproductionRate: the new 

cicadas have the same properties of their parents, and start a 

new life cycle underground, according to their duration. 

 

Obviously, before each step we shuffle the list of alive 

cicadas, in order to randomise the process. 

6. Results 

 

Here we present some of the results from the simulation. 

Each run represent 20.000 years of time, in which we 

compute each step presented before, in order to define the 

population dynamics. For each run we show the graphs at 

times 20, 1000, 5000 and 20000. 

Each graph has on x axis the classes, ordered by the 

number of years to be spent underground before emerging 

to the surface; on y axis the number of cicadas. 

 

The first run we present features these parameters: 

 

magicicadasNumber 10000  

reproductionRate 6.0  

chanceToSurviveAtBirth true 

chanceToSurviveAtBirthRate 0.15  

predators true  

predatorsNumber 190  

resources 1000  

maxSleepingTime 20  

 

During first 20 steps (figure 2) the cicadas with few 

years of sleeping died, according to their low 

chanceToSurviveAtBirthRate. At this time nothing can be 

said about the trend, yet, since most of the cicadas have 

been out for just one time and the food and predators 

dynamics have not yet influenced the results. 

 
 

Fig. 2 Experiment 1 at 20 tics 

 

Normally the even classes are the least likely to survive, 

since they have many divisors. This causes many cicadas to 

be out at the same time, that starve to death according to the 

limited resources constraint. As you can observe in figure 3, 

all the even classes are gone, but class #20. This is because 

it’s the longer living one (and in our model “longer is 

better”) and because it’s out less then others. Notice that at 

this time (after 1000 years) four out of six classes which 

still exist have a prime number based life cycle. 

 

 

 
 

Fig. 3 Experiment 1 at 1000 tics 

 

 

Without the chanceToSurviveAtBirthRate, which increases 

at each time step the probability of a class to survive and go 

out, we’d obtain a different effect: in fact the populations 

with longest sleeping time are not competitive as the others, 

since they don’t take advantage from the reproduction rate, 

being out less often. This would be highly unrealistic: the 

classes with a short life cycle (one to three years) will have 

much more chances to go out and reproduce themselves, 

when compared to those with longer cycles. As said before, 

nature often prefers longer life cycles, when possible, so 

our model holds. 

 

 
 

Fig. 4 Experiment 1 at 5000 tics 

 

In figures 4 and 5 we can observe the typical trend of all 

the experiments, with a stable population concentrated in 

few classes. In particular, with the parameters we choose, 

after 5000 tics we have three high prime numbers (13, 17 



 

and 19) and the longest possible class (20), while after 

20000 cycles the highest reproduction rate of the lower 

classes wins over the longest living one, and the only three 

remaining are represented by the three highest prime 

numbers lower than 20, which are 19, 17 and 13. While in 

nature a cicada with a life cycle of 19 years doesn’t exist, 

probably because it wouldn’t be possible for such insect to 

life so long, in our simulated world that is considered 

feasible. If we had classes just up to 18, we would have 

reproduced exactly the real situation, that is one in which 

two species emerge, the magicicada tredecim and the 

magicicada septendecim. In this experiment, then, you can 

observe that the populations of magicicadas confirm the 

“myth” of being biological prime number generator. 

 

 

 
 

Fig. 5 Experiment 1 at 20000 tics 

 

We present also another run with few different 

parameters, which are shown below: 

 

magicicadasNumber 10000  

reproductionRate 2.0  

chanceToSurviveAtBirth true 

chanceToSurviveAtBirthRate 0.1 

predators true  

predatorsNumber 180  

resources 1000  

maxSleepingTime 20  

 

As you can see, we lowered the reproduction rate, from 

6.0 to 2.0, and we also lowered the “chance to survive at 

birth rate”, from 0.15 to 0.1. Also the predators number is 

lower, stepping from 190 to 180. This set of parameters 

should penalize the two extremes: shortest living classes 

have less benefits from the reproduction rate, which is 

lower, while longest living ones don’t tale advantage from 

living underground as in the previous experiment.  

 

The initial steps (fig. 6) are very similar to experiment 

1, with some relevant differences: class #4 and #5, which in 

the first experiment had about 100 and 250 cicadas, 

respectively, are now almost gone after the first 20 steps. 

 

 
 

Fig. 6 Experiment 2 at 20 tics 

 

A lower reproduction rate affects the shortest living 

classes in the longer runs, while a lower probability to 

survive being underground for longer times affects the 

highest one, as you can see in figure 7. This figure will be 

even more evident when reach a steady state at turn 5000. 

After 1000 years four out of seven classes are prime 

numbers. 

 

 
 

Fig. 7 Experiment 2 at 1000 tics 

After 5000 tics (figure 8) the situation is clear and 

prefigures the final one at 20000 tics (figure 9). Class #11 is 

the lowest which survived the selection, while #17 is the 

highest among the three which are still alive. This proves 

that the results are quite “parameters sensitive” and that, 

again, this model is a good prime numbers generator. But 

here we also have class #14; even if its trend is a decrease, 

going from 5000 to 20000 steps, we think that it survived 

since it’s a central class among the other two and, above all, 

14, even being an even number, is the only one left in the 

model so doesn’t have to concur with others. If we run the 

simulation for other 20000 years or so we probably would 

have found a world with just classes #11 and #17 in it.  

 



 

 
 

Fig. 8 Experiment 2 at 5000 tics 

 

 

 
 

Fig. 9 Experiment 2 at 20000 tics 

 

The results are quite interesting since in two different 

runs, with different parameters, the classes which are most 

likely to survive are those based on prime numbers, but 

cicadas don’t know prime numbers and can’t even 

calculate! This is a good example about how agent based 

models can show an emergent behaviour, just from the 

interaction of many simple entities, even when the agents 

are not “intelligent” at all, but just reactive agents 

responding to the stimuli coming from the environment. 

7. Parameters Tuning by Repeated Execution 

 

Our model, for its construction, is very “parameters 

sensitive”, in the sense that a slightly different reproduction 

rate, or a negligible variation of the cicadas/predators ratio 

can lead to very different results in the long run. For this 

reason, we thought of a way to test many different 

parameters using a sort of “brute force” approach, i.e. by 

changing a value at a time, the others being the same 

(ceteris paribus). This is a sort of tuning, of even validation, 

useful to select the parameters that best fit the real situation. 

This is done mainly for two reasons: 

 

1) find dependencies among parameters and results 

2) being able, once found the “best” parameters to get 

prime numbers, to start what-if analysis and 

simulate situations different from the real ones.  

 

In particular, we want to see what happens if the species 

are 50, instead of 20. This is something which is, of course, 

impossible in reality, where a cicada living 17 years is 

already the longest living insect in the world, but could be 

very interesting to simulate, in order to see if this can be a 

true “prime numbers biological generator”. 

 

 

8. CONCLUSIONS 

 

Biology is an important reference for agent based 

modelling, both as a source for examples/applications and 

as methodological inspiration. Many important results in 

Artificial Life and Computer Science are based on 

biological metaphors such as the ALife concept itself and, in 

detail Game of Life by John Conway, Holland’s Genetic 

Algorithms, Neural Networks and many others. We also 

mention the simple ants or “vants” (virtual ants), with their 

simple rules and their simulated pheromones that are 

present in a great number of models and algorithms, since 

the Langton’s ant. 

In this paper we applied agent based simulation to a 

biological phenomenon. Two species of cicadas living in 

North America show a unique behaviour: they remain in the 

ground for all but their last few weeks of life, when they 

emerge “en masse” from the ground into the forest where 

they sing, mate, eat, lay eggs and then die. The most 

interesting part is that their life cycle is, respectively, of 13 

and 17 years, which are obviously prime numbers. 

Biologists tried to explain this phenomenon with some 

theories, among which we find the one stating that prime 

number were selected by evolution, since in this way the 

two broods would have had less chances to meet, avoiding 

to share resources. 

We created an agent based evolutionary model in which 

the agents represent the cicadas; there are different species 

of agents, who differ for the length of their life cycle. In our 

experiments we used life cycles going from 1 to 20, since 

beyond wouldn’t have been realistic, being magicicada 

septendecim the longest living insect in the world. In the 

proposed model we have a finite number of resources, and 

the agents must compete for them; when their time comes, 

the agents “come out” and must eat, before being able to 

reproduce themselves. Those who can’t find food die, while 

the ones who can live; also predators are present in the 

model. This is another threat for the insects, and some of 

them are caught and eaten by predators; the one who 

survive can reproduce themselves and then die of a natural 

death. The children inherit the life cycle length from their 

parents; of course, if no cicada of a brood is alive, then that 

class is extinct and disappears from the simulation. Our 

model features a set of modifiable parameters, such as the 

reproduction rate, the number of predators, the maximum 

allowed life cycle and the probability to be alive after the 

period spent underground; this last parameter increases with 

the time, since in nature it’s been proven that a longer life is 

a better option. 



 

 

We presented two different sets of results from our 

model; in the first one the parameters are quite realistic, 

with a very high reproduction rate. We examined the 

quantities of cicadas at four different times: after 20, 1000, 

5000 and 20000 years/tics. In our first run we have that the 

species which are still existent after 20000 years are the 

ones with a life cycle of 13, 17 and 19 years. This is a great 

result, since it mimics the real world; 19 years is not 

applicable in the real world since it’s too long a life cycle 

for an insect, but anyway it’s a prime number itself, proving 

that the basics of cicadas life cycles can be a biological 

prime number generator. 

In the second experiment we wanted to concentrate on 

central values and see what happened; we then lowered the 

reproduction rate and the probability to be alive at the 

“wake up” time. The results were interesting again; the 

selected species were again two prime numbers, 11 and 17 

and an even number which, of course, is prime for them, 

that’s 14. Anyway the cicadas with a 14 years long life 

cycle showed a negative trend; they would probably 

disappear in the long run, living only the two prime 

numbers. 

 

This model of evolutionary biology merges and 

validates with an agent based technique some different 

theories. We presented some robust results which partially 

confirm the “myth” of periodical cicadas being a biological 

prime number generator. In future works we’d like to 

increase the maximum life spam value, even if this is not 

biologically possible, to see if the prime numbers theory 

holds for larger numbers. Besides we’d like to implement 

hybridization among different species, which could be a 

strengthening mechanism for the mentioned “predator 

satiation” hypothesis. 2004 has been the latest year of 

"Brood X", in North America, during which there has been 

the major outbreak of the 17-year cicada (figure 9. 

 

 
 
Fig. 9 Magicicada Septendecim 
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